Info message
Successful operation message
Warning message
Error message
Right now we are

vitamin K

If you've read about vitamins A, B, C, D, and E, you might feel like we've missed a few vitamins as we jump over to vitamin K. But there are no vitamins F through J (at least not yet). Vitamin K is named after the German word for blood clotting (koagulation). In fact, this is probably the most common connection that people make with vitamin K—they associate this vitamin with the process of blood clotting. We'll explain more about this function of vitamin K in our "Role in Health Support" section below. However, it's important to know that vitamin K makes a variety of unique contributions to our health, and our knowledge about these contributions has been expanding in new and unexpected ways.

Foods with most vitamin K per 100 grams (Ordered by % of Daily Recommended Intake)
Food Percentage of DRI per 100 grams
Mustard greens
Beet greens
Collard greens
Turnip greens
Swiss chard
Cilantro & Coriander seeds
Black pepper
Brussels sprouts
Romaine lettuce
Chili pepper, dried
Sun Dried Tomatoes

Basic Description

If you've read about vitamins A, B, C, D, and E, you might feel like we've missed a few vitamins as we jump over to vitamin K. But there are no vitamins F through J (at least not yet). Vitamin K is named after the German word for blood clotting (koagulation). In fact, this is probably the most common connection that people make with vitamin K—they associate this vitamin with the process of blood clotting. We'll explain more about this function of vitamin K in our "Role in Health Support" section below. However, it's important to know that vitamin K makes a variety of unique contributions to our health, and our knowledge about these contributions has been expanding in new and unexpected ways.

There are three basic types of vitamin K. Their common names are K1, K2, and K3.

The K1 form of vitamin K is found in plant foods, and 44 of our WHFoods are plant foods that serve as excellent, very good, or good sources of vitamin K! Many of our best sources of this vitamin are green vegetables (including 16 excellent sources); this makes good sense since K1 is required for green plants to conduct the process of photosynthesis. The K2 form of vitamin K is made from K1 and K3 by bacteria and other microorganisms. It can also be made in the human body through a conversion process involving K1 and K3.

In plant foods, you won't find much preformed K2, unless those plant foods have been fermented or otherwise transformed by bacteria or other microorganisms. Certain microorganisms can convert K1 into K2. A great example is Bacillus natto. This bacterium can convert K1 into K2 and it is often used in the production of fermented soy products. In fact, this practice is so common that you will sometimes find the word "natto" being used to refer to these foods. Fermented soyfoods on our WHFoods list—including tempeh and miso—can contain significant amounts of K2. (And as plant foods, they also naturally contain K1.) Most of our WHFoods animal foods also contain K2, although the amounts are relatively small and insufficient to qualify them as excellent, very good, or good sources of vitamin K.

A third type of vitamin, found preformed in food but in very small amounts, is menadione, or vitamin K3. We don't yet have good research on the health role of these small of K3 amounts in food.

Role in Health Support

Blood Clotting

As mentioned in the Description section, vitamin K is perhaps best known for its role in the blood clotting process. When people hear the term "blood clot," they might sometimes jump to the conclusion that a blood clot is bad. But there are many times when it is very important for our blood to clot. For example, blood clots are necessary to stop bleeding when our skin gets punctured.

Yet at the same time, people are correct when they say that blood clotting can cause problems. For example, if the inside of a blood vessel has become too narrow due to the buildup (over time) of plaque, this plaque can sometimes rupture and our body may form a blood clot in order to seal off the ruptured plaque. However, this blood clot might also end up stopping the flow of blood through the blood vessel since the blood vessel had become overly narrowed from the buildup of plaque.

Regardless of the specific situation, vitamin K is necessary for blood clots to form. The clotting process is very complex, requiring at least 12 proteins to function before the clotting process can be completed. Four of these protein clotting factors require vitamin K for their activity.

Luckily, we rarely see vitamin K deficiency lead to impairment in the clotting process in adults. We see it in newborns because vitamin K does not efficiently cross the placenta to the fetus, and it can take several weeks for the fetus to build up dietary stores. We also occasionally see clotting problems related to vitamin K deficiency in persons with severe liver or gastrointestinal diseases. But vitamin K deficiency basically never causes insufficient clotting disorders in healthy adults.

In contrast to insufficient clotting in healthy adults, we do see vitamin K deficiency becoming involved in unwanted clotting. This process once again involves the activity of multiple vitamin K-dependent enzyme systems, most importantly a system called matrix Gla protein.

It is currently somewhat of an open question how important vitamin K is to the progression of clot formation and heart disease. Researchers have sometimes, but not consistently, been able to correlate low vitamin K intake with increased risk of heart disease.

One problem in interpreting this research, however, is separating out the effect of healthy foods from the nutrients they contain. Even casual readers of this site are probably aware that the same green leafy vegetables that are our richest sources of vitamin K1 are also among the best sources of many other heart-protecting nutrients. Included in this heart-protective list from green leafy vegetables would be the vitamins A (in the form of carotenoids), C, E and B6, the minerals potassium and magnesium, and dietary fiber.

Researchers have attempted to answer this question by giving vitamin K in pill form at amounts similar to those found in the diet. Over a three-year period, 500 mcg of vitamin K—about the amount found in one serving of mustard greens—was associated with slightly slower progression of hardening of the arteries of the heart.

Given the preliminary and somewhat contradictory nature of this research, we would characterize the association between diets high in vitamin K and protection against coronary artery disease to be plausible, but still unproven.

Bone Health

Vitamin K is a fascinating nutrient with respect to bone health, and unlike some of the open-ended questions related to clotting, knowledge about the role of vitamin K nourishment in bone support is fairly well-established. Individuals who are vitamin K deficient have repeatedly been shown to have a greater risk of fracture. In addition, for women who have passed through menopause and have started to experience unwanted bone loss, vitamin K has clearly been shown to help prevent future fractures.

Bone support involves different forms of vitamin K

Research has shown that our bone cells take up vitamin K in the form of K1 as well as K2, suggesting that these forms of the vitamin may play different roles in the health of our bone. In the case of K2, researchers have also become interested in two particular subtypes of K2 called MK-4 and MK-7, which appear to be uptaken by our bone cells in preference to other subtypes. In fact, research on bone health is partly responsible for getting researchers more and more interested in the whole issue of vitamin K2 subtypes. Vitamin K2 contains a chemical "tail" composed of repeating units called prenyl units. The most common forms of K2 contain either 4,5,7,8, or 9 prenyl units, and are therefore referred to as MK-4, MK-5, MK-7, MK-8, and MK-9. (The letter "M" in "MK" refers to "menaquinone"—the scientific name for the K2—and the "K" refers to the common name of vitamin K.) While human diets usually consist of about 10-25% K2, the proportion of these different K2 forms can vary widely. Fermented soy foods (mentioned earlier in this article as an important source of K2) tend to have greater amounts of MK-7. Cheese may have greater amounts of MK-8 and MK-9. However, in the average U.S. diet, MK-4 typically accounts for about one-third or more of all K2 due to its presence in eggs and meats.

How bone support works

The bone-related benefits of vitamin K appear to depend on at least two basic mechanisms. The first of these mechanisms involves a type of bone cell called osteoclasts. Osteoclasts are bone cells in charge of bone demineralization—they help take minerals out of the bone and make them available for other body functions. While the activity of these cells is important for proper health, we do not want too many osteoclasts (or too much activity by osteoclasts) since those imbalances would mean too much demineralization of bone. Vitamin K helps our body keep this process in check. The MK-4 form of vitamin K2 (also called menatetrenone) is known to block formation of too many osteoclasts, and perhaps also to initiate their programmed cell death (a process called apoptosis).

A second mechanism involves the role of vitamin K in a process called carboxylation. (This process is the same one discussed earlier in relationship to the stickiness of clotting factors required for proper blood clotting.) For our bones to be optimally healthy, one of the proteins found in bone—a protein called osteocalcin—needs to be chemically altered through the process of carboxylation. (Osteocalcin is not just any typical bone protein. It is a protein especially linked to our bone mineral density (BMD), and for this reason, it often measured in our blood when doctors are seeking to determine the health of our bone.) When too few of the osteocalcin proteins in our bone are carboxylated, our bones have increased risk for fracture. This unwanted risk appears to be particularly important with respect to hip fracture. Scientists refer to this bone problem as a problem involving "undercarboxylated osteocalcin" and they have determined that vitamin K can greatly improve the situation. Since vitamin K is required for proper activity of the carboxylase enzyme that allows carboxylation of the osteocalcin proteins in our bone, vitamin K can help restore these bone proteins to their proper place in our bone structure and strengthen the composition of the bone. In clinical studies, both K1 and K2 forms of vitamin K appear to play a role in osteocalcin carboxylation. Some studies show the K2 form (and specifically MK-4) to be especially helpful in postmenopausal bone protection.

Whether provided by the diet in the form of K1 or K2, this vitamin is becoming more and more focal in research on bone protection. Low levels of vitamin K intake are emerging as dietary risk factors for osteoporosis. Researchers have shown that increasing dietary vitamin K intake by 100 mcg per day—roughly doubling the average American adult intake for a time period of one full year—can lead to a significant increase in bone density in post-menopausal women. Low levels of vitamin K have also been associated with increased risk of arthritis. Low activity of vitamin K-dependent proteins inside the joints has been suggested as a likely mechanism for this increased risk.

Other Potential Health Benefits

Not suprisingly based on its role in photosynthesis and movement of electrons to generate energy, vitamin K may function as an important antioxidant nutrient especially in certain chemical forms (called "reduced" forms). In older men, vitamin K has been shown to help improve insulin resistance. In preliminary lab and animal studies, vitamin K has been investigated as a critical nutrient for protecting cells that line blood vessels, including both veins and arteries.

Summary of Food Sources

Both plant and animal foods can provide us with significant amounts of vitamin K. Fresh green vegetables are our most steadfast source of K1. At WHFoods, 16 of our green vegetables rank as excellent sources for this vitamin. Many of our Herbs & Spices—including parsley, basil, cilantro, sage, oregano and black pepper—also provide excellent amounts of vitamin K.

One serving of any food noted above will provide you with at least 10% of your daily vitamin K needs. In the case of kale—our top source of vitamin K—a 1-cup serving will provide you with over 1,000 micrograms, which is approximately 10 times the recommended minimum daily amount! Since the National Academy of Sciences has chosen not to set a maximal recommended intake level (Tolerable Upper Limit, or UL) based on available research, you will not be exceeding a recommended maximum amount even with ten times the minimum requirement (or greater amounts).

Outside of the vegetable family, you will find kiwifruit, blueberries, prunes, and grapes amount the most vitamin K-rich fruit sources, and soybeans and miso as two good legume sources. As mentioned earlier, most of our featured animal foods—including pasture-raised eggs, pasture-raised chicken, grass-fed beef, grass-fed lamb, grass-fed cheese, and grass-fed cow's milk—contain measurable amounts of vitamin K, as do shrimp, sardines, tuna, and salmon.

As you can see, nearly half of our WHFoods (44/100) rank as good, very good, or excellent sources of vitamin K. Your meal combinations for achieving ample vitamin K here are extensive. Still, as a fallback source for vitamin K1, you would most likely want to turn to dark green leafy vegetables since they typically provide 500-1,000 micrograms per serving. For vitamin K2, you would mostly likely want to turn to fermented plant foods (like miso or tempeh) or animal foods. As mentioned earlier, fermented plant foods and animal foods feature different subtypes of vitamin K2. Remember, however, that researchers know of no hard and fast requirement for consuming any set amount of preformed K2 from your meal plan since the cells of your body are able to take K1 and convert it into K2. This provides you with a lot of flexibility in choosing among the 40+ WHFoods that are ranked sources of this vitamin.

Common nameVitamin K1Vitamin K2Vitamin K3
Scientific namephylloquinonesmenaquinonesmenadiones
Food sourcesplant foods, especially dark green leafy vegetablesmeats, eggs, dairy, fish, fermented plant foods, fermented animal foodsnot known to be provided in substantial, naturally occurring amounts in food

Nutrient Rating Chart

Introduction to Nutrient Rating System Chart

In order to better help you identify foods that feature a high concentration of nutrients for the calories they contain, we created a Food Rating System. This system allows us to highlight the foods that are especially rich in particular nutrients. The following chart shows the World's Healthiest Foods that are either an excellent, very good, or good source of vitamin K. Next to each food name, you'll find the serving size we used to calculate the food's nutrient composition, the calories contained in the serving, the amount of vitamin K contained in one serving size of the food, the percent Daily Value (DV%) that this amount represents, the nutrient density that we calculated for this food and nutrient, and the rating we established in our rating system. For most of our nutrient ratings, we adopted the government standards for food labeling that are found in the U.S. Food and Drug Administration's "Reference Values for Nutrition Labeling." Read more background information and details of our rating system.
World's Healthiest Foods ranked as quality sources of
vitamin K
Foods Rating
Kale1 cup36.41062.101180583.6excellent
Spinach1 cup41.4888.48987429.2excellent
Mustard Greens1 cup36.4829.78922455.9excellent
Collard Greens1 cup62.7772.54858246.4excellent
Beet Greens1 cup38.9696.96774358.5excellent
Swiss Chard1 cup35.0572.77636327.3excellent
Turnip Greens1 cup28.8529.34588367.6excellent
Parsley0.50 cup10.9498.56554911.4excellent
Broccoli1 cup54.6220.1224580.6excellent
Brussels Sprouts1 cup56.2218.8724377.9excellent
Romaine Lettuce2 cups16.096.35107120.6excellent
Asparagus1 cup39.691.0810146.0excellent
Basil0.50 cup4.987.9498360.4excellent
Cabbage1 cup43.571.407932.8excellent
Bok Choy1 cup20.457.806456.7excellent
Celery1 cup16.229.593336.6excellent
Kiwifruit1 2 inches42.127.813113.2excellent
Leeks1 cup32.226.422916.4excellent
Cilantro0.50 cup1.824.8028269.6excellent
Sage2 tsp4.424.0027108.8excellent
Green Beans1 cup43.820.00229.1excellent
Cauliflower1 cup28.517.111912.0excellent
Cucumber1 cup15.617.061921.9excellent
Tomatoes1 cup32.414.22168.8excellent
Oregano2 tsp5.312.431446.9excellent
Black Pepper2 tsp14.69.491113.0excellent
Green Peas1 cup115.735.68406.2very good
Blueberries1 cup84.428.56326.8very good
Grapes1 cup104.222.05254.2very good
Carrots1 cup50.016.10186.4very good
Summer Squash1 cup36.06.3073.5very good
Cloves2 tsp11.55.96710.4very good
Chili Peppers2 tsp15.25.7167.5very good
Soybeans1 cup297.633.02372.2good
Avocado1 cup240.031.50352.6good
Raspberries1 cup64.09.59113.0good
Winter Squash1 cup75.89.02102.4good
Pear1 medium101.57.8391.5good
Cranberries1 cup46.05.1062.2good
Miso1 TBS34.25.0462.9good
Bell Peppers1 cup28.54.5153.2good
Plum1 2-1/8 inches30.44.2252.8good
Cantaloupe1 cup54.44.0041.5good
Eggplant1 cup34.62.8731.7good
World's Healthiest
Foods Rating
excellent DRI/DV>=75% OR
Density>=7.6 AND DRI/DV>=10%
very good DRI/DV>=50% OR
Density>=3.4 AND DRI/DV>=5%
good DRI/DV>=25% OR
Density>=1.5 AND DRI/DV>=2.5%

Impact of Cooking, Storage and Processing

Vitamin K is a fairly stable nutrient to most types of processing. Levels go down only slightly with common cooking techniques and tend to stay stable with storage.

Vitamin K in oils, but probably not in vegetables, is reduced by exposure to light. This is one reason, but certainly not the only one, that we recommend storing oils in dark areas and in opaque, sealed containers.

The hydrogenation process that is used to stabilize and solidify liquid fats damages a significant amount of the vitamin K content. This is just one of many reasons why we believe that hydrogenated fats should be avoided.

Risk of Dietary Deficiency

Average intake of vitamin K for U.S. adults has been estimated at approximately 80-85 micrograms per day, or about 70-90% of recommended intake. At WHFoods, we adopted the DRI standard for women 19 years and older of 90 micrograms per day as the one we use in our Nutrient Rating Charts, and on average, U.S. adults fall below this amount. In terms of age groups, adolescents and young adults have more risk of dietary deficiency than older adults, and men have more risk of deficiency than women, perhaps in part because the DRI for men age 19 years and older is 120 micrograms, or one-third higher than the DRI for women.

In light of the many foods that are rich in vitamin K—especially green vegetables—these averages tell us that on average, we are consuming very few green vegetables. For example, a single one-cup serving or broccoli each day would more than double our average vitamin K intake.

As described above, it would not take many food changes to help us move from our average marginal intake of vitamin K to a more optimal level. Increasing our intake of the World's Healthiest Foods would be a great way to make this shift, especially if green vegetables were given center stage.

Other Circumstances that Might Contribute to Deficiency

Apart from low dietary intake, the most common reason to see symptoms of vitamin K deficiency at least related to blood clotting involves use of medications that deliberately block the ability of vitamin K to help make blood clotting proteins. For people using these medications, there are specific medical reasons for trying to reduce vitamin K's ability in this regard. Anyone taking anti-coagulant medications should talk to their doctor about dietary intake of vitamin K and how to coordinate it with their overall health goals.

There are a few disease states that can interfere with vitamin K nutrition or utilization. For instance, any digestive disease that impairs absorption of fat-soluble nutrients may impair vitamin K uptake from foods. End-stage liver disease can also lead to symptoms of vitamin K deficiency. However, these problems are once again medical in nature, rather than lifestyle oriented and widely encountered by the general public.

Relationship with Other Nutrients

Both vitamin A and vitamin E can compete for absorption with vitamin K. To our knowledge, however, this has only been reported with mega-dose supplementation, not with dietary intake. As such, you probably do not need to eat in a certain pattern to protect your vitamin K nutrition, and you can enjoy the delicious taste of foods that are rich in all of these important nutrients.

Vitamin K works with the other nutrients important to bone health—calcium, vitamin D, and magnesium—to ensure that your skeleton stays strong. A deficiency of any of these nutrients can lead to problems that cannot be fully undone by focusing on other nutrients in the list.

Risk of Dietary Toxicity

To our knowledge, there has never been a report of a person consuming a toxic dose of vitamin K from food, unless that person was taking a prescription medication specifically designed to affect vitamin K activity. Given the strong track record of safety, the National Academy of Sciences has chosen not to establish a Tolerable Upper Intake Level (UL) for vitamin K. Further evidence for the safety of dietary vitamin K comes from research studies where doses of vitamin K at 500 times the Dietary Reference Intake (DRI) level did not lead to observable toxicity.

The absence of a recommended maximum intake level is good news for anyone who enjoys vegetable-rich meals and especially those meals containing or more of our 44 top-ranked vitamin K-containing vegetables. Two or three of these vegetables can easily provide 10 times the WHFoods recommended intake amount of 90 micrograms. However, just to reiterate a point we made earlier in this section: risk of excessive vitamin K intake still applies to individuals who are taking prescription medications designed to regulate the activity of vitamin K, and any individual in this category should discuss dietary vitamin K intake with their healthcare provider.

Disease Checklist

  • Blood clotting disorders
  • Osteoporosis
  • Coronary artery disease
  • Cancer
  • Liver disease
  • Celiac disease
  • Crohn's disease
  • Ulcerative colitis
  • Cystic fibrosis

Public Health Recommendations

In 2001, the National Academy of Sciences released a set of Dietary Reference Intakes (DRI) for vitamin K. These included a set of age and gender specific Adequate Intake Levels (AI) that are summarized in the following chart:
  • 0-6 months: 2 mcg
  • 6-12 months: 2.5 mcg
  • 1-3 years: 30 mcg
  • 4-8 years: 55 mcg
  • 9-13 years: 60 mcg
  • 14-18 years: 75 mcg
  • 19+ years, female: 90 mcg
  • 19+ years, male: 120 mcg
  • Pregnant or lactating women, 14-18 years: 75 mcg
  • Pregnant or lactating women, 19+ years: 90 mcg

The 2001 vitamin K DRIs did not include any Tolerable Upper IntakeLevels (ULs). We are not aware of any other public health organization that has issued a maximum level for dietary intake of vitamin K.

The Daily Value (DV) for vitamin K is 80 micrograms. This is the value that you'll see on food and supplement labels.

At WHFoods, we selected the DRI of 90 micrograms for women ages 19 and above as our recommended daily intake level.


  • Atkins GJ, Welldon KJ, Wijenayaka AR et al. Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms. Am J Physiol Cell Physiol. 2009 Dec;297(6):C1358-67. doi: 10.1152/ajpcell.00216.2009. Epub 2009 Aug 12.
  • Bailey RL, Fulconi VL III, Keast DR et al. Examination of Vitamin Intakes among US Adults by Dietary Supplement Use. Journal of the Academy of Nutrition and Dietetics, Volume 112, Issue 5, May 2012, Pages 657-663.e4.
  • Ferland G, Sadowski JA. Vitamin K1 (phylloquinone) content of edible oils: effects of heating and light exposure. J Agric Food Chem 1992;40:1869-73.
  • Fisher L, Byrnes E, and Fisher AA. Prevalence of vitamin K and vitamin D deficiency in patients with hepatobiliary and pancreatic disorders. Nutr Res. 2009;29:676-83.
  • Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001;394-419.
  • Hegarty JM, Yang H, and Chi NC. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development. 2013 Apr;140(8):1713-9. doi: 10.1242/dev.093112.
  • Hirota Y1, Tsugawa N, Nakagawa K et al. Menadione (vitamin K3) is a catabolic product of oral phylloquinone (vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (vitamin K2) in rats. J Biol Chem. 2013 Nov 15;288(46):33071-80. doi: 10.1074/jbc.M113.477356. Epub 2013 Sep 30.
  • Kanellakis S, Moschonis G, Tenta R, et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K1) or menaquinone-7 (vitamin K2): the Postmenopausal Health Study II. Calcif Tissue Int 2012:90:251-62.
  • Kurosu M and Begari E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules. 2010 Mar 10;15(3):1531-53. doi: 10.3390/molecules15031531.
  • Kuwabara A, Tanaka K, Tsugawa N, et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporosis Int 2009;20:935-42.
  • Nakagawa K, Hirota Y, Sawada N et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature. 2010 Nov4;468(7320):117-21. doi: 10.1038/nature09464. Epub 2010 Oct 17.
  • Neogi T, Booth SL, Zhang YQ, et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 2006;54:1255-61.
  • Nickerson ML, Bosley AD, Weiss JS et al. The UBIAD1 prenyltransferase links menaquinone-4 [corrected] synthesis to cholesterol metabolic enzymes. Hum Mutat. 2013 Feb;34(2):317-29. doi: 10.1002/humu.22230. Epub 2012 Nov 27
  • Nowicka B and Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta. 2010 Sep;1797(9):1587-605. doi: 10.1016/j.bbabio.2010.06.007. Epub 2010 Jun 19.
  • Oka H, Akune T, Muraki S, et al. Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci 2009:14:687-92.
  • Peterson JW, Muzzey KL, Haytowitz D, et al. Phylloquinone (vitamin K1) and dihydrophylloquinone content of fats and oils. J Am Oil Chem Soc 2002;79:641-6.
  • Shea MK, Holden RM. Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr 2012;3:158-65.
  • Shea MK, O'Donnell CJ, Hoffmann U, et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 2009;89:1799-807.
  • Shearer MJ, Fu X, and Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr. 2012 Mar 1;3(2):182-95. doi: 10.3945/an.111.001800.
  • Shearer MJ and Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis.
  • J Lipid Res. 2014 Mar;55(3):345-62. doi: 10.1194/jlr.R045559. Epub 2014 Jan 31.
  • Vos M, Esposito G, Edirisinghe JN et al. Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science 8 June 2012: Vol. 336 no. 6086 pp. 1306-1310. DOI: 10.1126/science.1218632.
  • Much grattidtude to George Mateljan,and the George Mateljan Foundation for